Current loop display (flush-type)

Safety warnings

When mounting, initiating and operating this indicator the safety precautions and regulations have to be
 observed. Only staff with a corresponding qualification should work with the indicator. A nonobservance of the safety regulations may cause serious injuries and/or damages.Check before initial operation the suitability of the indicator for this area of application. The technical data of this manual have to be followed. Never connect the analogue input directly to a voltage supply (eg 24 VDC), that will destroy the indicator.

Characteristics

Input: $4 . . .20 \mathrm{~mA}$ (current loop)
Option: $4 \ldots . .20 \mathrm{~mA} / 0 \ldots .20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$ (external supply)
Supply: current loop Option: 230 VAC / 115 VAC / 24 VDC
Limit contacts: 2 open collectors ($36 \mathrm{VDC}, 150 \mathrm{~mA}$)
2 relays: maximum 5 A (125 VDC / 250 VAC)
Display range maximum: -999... 9999
Adjustment: with 3 keys / Memory: minimum/maximum
Unit: dimension strip (fixed under front foil)
Option: $4^{\text {th }}$ digit programmable as unit $\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$
Enclosure: 96x48 flush-type (installation depth: approx. 55 mm)
Protection: IP 65 (front) / IP20 (back)

Dimensions

Note for running a current loop display

The input 0 (4)... 20 mA has to be operated with a mA-signal only. A direct connection to a voltage supply (eg 24 VDC) will destroy the indicator and the guarantee does not cover this.
For an operational test the display has to be supplied out of a power source for mA (eg mA source / calibration instrument).
In normal operation the display is connected in series with a transmitter ($4 \ldots .20 \mathrm{~mA}$) or is connected to a 4 ... 20 mA analogue output of a device.

Mounting holes

1. Cut the cutout into the control board
2. Raise the plastics clamps at the back with a screw driver and remove them
3. Put in the indicator into the cutout
4. Push in the plastic clamps and press them ahead

Connection current loop 4... 20 mA

Connection with external power supply

Examples for connection

The respective data for connection are shown on the type plate.
sample type plate

CB-1-0-2-0-0-x- $0 \times$		
	SN: 1311.090	7-1.0.001 At.N.: 100.00059
Input	4-20 mA (+)1 / (-)2	Output : relay
Range	$0 . .250{ }^{\circ} \mathrm{C}$ (programmable)	next calibration
Supply :	230 VAC (L) $10 /(\mathrm{N}) 9$	$08 / 08$

The analogue input of the indicator and the voltage supply are not galvanically insulated.
limit value $1 \quad$ limit value 2

limit value $1 \quad$ Limit value 2

Indicator (Current loop 4... 20 mA)

Program table for programming the indicator

PN	Description	Range D	Delivered state ${ }^{1}$
0	Calibration mode $0=$ sensor calibration (with applied signal, factory configuration) $1=$ programming (indicated value at $4 / 20 \mathrm{~mA}, 0 / 20 \mathrm{~mA}, 0 / 10 \mathrm{~V}$)	0/1	1
1	Final value (Programming the value at $20 \mathrm{~mA}(10 \mathrm{~V})$, eg 600)	-999... 9999	250
2	Initial value (Programming the value at $4 \mathrm{~mA}(0 \mathrm{~mA}, 0 \mathrm{~V})$, eg 100)	-999... 9999	0
3	Selection of decimal point or unit (Programming a unit the indication shifts to the left)	$\begin{gathered} 0 \\ 0.0 \\ 0.00 \\ 0.000 \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{F} \end{gathered}$	${ }^{\circ} \mathrm{C}$
4	Time of average / refresh of display (in 1/10 seconds)	5... 10	10
52)	Stabilisation zero (the +/- range where 0000 is indicated)	0... 100	2
9	Switch off time of average (jump of input signal of $x \%$ of adjusted range of indication	5... 100	5
503)	Definition PIN-code for programming interlock (value >0000))	0000... 9999	90000
51	Version of program		
52	Version of program day/month		
53	Version of program year		
54	Serial number manufacterer		
55	Serial number customer		
56	Day/month of delivery		
57	Year of delivery		
100	Number of calibration setpoints (calibration points for sensor calibration only, calibration points reduce the measuring rate)	0... 30	0
101... 130	Calibration points (the visible number of calibration points is fixed under PN100)	-999... 9999	0
1504)	Limit value 1: trigger value	-999... 9999	110
1514)	Limit value 1: reset value (hysteresis value)	-999... 9999	90
152	Limit value 1: delay of trigger (x100 ms)	0... 9000	0
153	Limit value 1: delay of reset ($\times 100 \mathrm{~ms}$)	0... 9000	10
1604)	Limit value 2: trigger value	-999... 9999	40
1614)	Limit value 2: reset value (hysteresis value)	-999... 9999	60
162	Limit value 2: delay of trigger (x100 ms)	0... 9000	0
163	Limit value 2: delay of reset (x100 ms)	0...9000	10
200	TAG number	0000.... 9999	0
1) With factory configuration			
3) Optionally (if a PIN-code is not defined, PN50 is hidden). A PIN-code can be programmed via PC-interface only during factory settings. When there is a definition for a PIN-code (indication of Pin during segment test), for programming (after key P was pressed) the defined PIN-code of PN51 has to be input. This has to be confirmed by pressing the P-Key for 2 seconds. If no key is used for approx. 1 minute, the programming mode is blocked again. When PN50 is selected to change an existing PIN-code, 5 times Pin is indicated before the changings can be started.			
4) The difference between trigger value and reset value is the hysteresis.			

Progamming

1. Connect the instrument according to the wiring diagram.
2. Switch power of the current loop (current between $4 \ldots 20 \mathrm{~mA}$) or the external power supply on. This is followed by an initalisation and a segment test. Then CULO is indicated and afterwards the version of firmware (eg F1.16). Subsequent current loop display is switching to the operation mode.
3. Press the \mathbf{P} key. Indication of program number $\mathbf{P} \mathbf{0}$.
4. Change the program number by simultaneous pressing of $\mathbf{P} \& \boldsymbol{\Delta}$ keys or $\mathbf{P} \& \boldsymbol{\nabla}$ keys.
5. With the desired program number being chosen, go to the stored value by pressing the \mathbf{P} key.
6. Short pressing of \mathbf{P} results in a change of digit. The value of the chosen digit is changed by pressing the $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ key.
7. Storing of the new settings is effected by pressing the \mathbf{P} for approx. 2 sec. This procedure is acknowledged by transversal bars in the display.
8. If no other key is actuated, the unit switches to its operation mode after seven seconds.

Additional key functions in standard mode for indication of min/max values

The $\boldsymbol{\Delta}$ key serves for indicating the value of the Max memory in the display for some seconds
The $\boldsymbol{\nabla}$ key serves for indicating the value of the Min memory in the display for some seconds
Simultaneous pressing of the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys erases the values of the memory (minimum / maximum)

Underflow/overflow

standard input range: 4,00... 20 mA
displayed standard input range: 3,90...20,10 mA
usable input range: 3,60...21,50 mA
warning underflow: $3,60 \ldots<3,9 \mathrm{~mA}$
warning overflow: >20,10...21,50 mA
indication underflow: $<3,60 \mathrm{~mA}$
indication overflow: $>21,50 \mathrm{~mA}$
On warning the indicator flashes
(normal indication is changing with bars).
Values below $3,60 \mathrm{~mA}$: a bar is changing with indication undr.
Values above $21,50 \mathrm{~mA}$: a bar is changing with indication over.

Technical data

Input

Current loop:
Input resistance:
4... 20 mA

Ri : approx. 450 ohms $(\mathrm{U}=9 \mathrm{~V})$
Ri : approx. 850 ohms ($\mathrm{U}=17 \mathrm{~V}$)
Voltage across adjustable with jumper
With external supply:

4... 20 mA	$\mathrm{Ri}:$ approx. 10 ohms
$0 \ldots .20 \mathrm{~mA}$	Ri : approx. 10 ohms
$0 \ldots . .10 \mathrm{~V}$	$\mathrm{Ri}:$ approx. 100 kohms

Accuracy

Resolution:
Measuring fault:
Temperature drift:
Measuring principle:
$\pm 0,2 \%$ of measuring range, ± 1 digit
100 ppm/K
ramp conversion

Indication

Display:
Overflow/Underflow:
Time of indication: Memory:

Limit contacts

Electronically: leakage current:
Mechanically: switching voltage:
switching current: VA: 0,1... 1250 / W: 0,1... 120 continuous current: 5 A
Indication: limit value reached: LED red
limit value not reached: LED green
Adjustment: limit value, hysteresis value and delay times with 3 keys
voltage supply "ON" = contacts active

Ambient conditions
Operating temperature: $0 \ldots+60^{\circ} \mathrm{C}$
Storing temperature: $-20 \ldots+80^{\circ} \mathrm{C}$

Supply

Current loop:
Direct current: $\quad 24 \mathrm{VDC} \pm 5 \%$ (maximum 50 mA)

Mechanics
Enclosure
Mounting :
Color:
Protection: front: IP 65 (with sealing)
Weight:
Connection:
(without galvanical insulation) 115/230 VAC, power consumption: 1,5 VA

Material enclosure: polycarbonate, self-extinguishing (UL94 V-0)
4... 20 mA (9 or 17 VDC voltage accross, adjustable with jumper)
$96 \times 48 \times 30 \mathrm{~mm}$ (empty) $96 \times 48 \times 55 \mathrm{~mm}$ (with terminals) with plastic clamps in pane black
back: IP 20
approx: 170 g (type 115/230 VAC)
plug-in terminal strip up to $1,5 \mathrm{~mm}^{2}$ interlockable

Programmable features

range of indication / time of indication / decimal point / unit (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$) / stabilisation zero point / limit value 1 / hysteresis value 1 / delay times 1 / limit value 2 / hysteresis value 2 / delay times 2 / locking of programming / calibration points / TAG number

Possibilities of indication

Programming the decimal point and unit the following scope of representation is possible:
xxxx / xxx.x / xx.xx / x.xxx / xxx ${ }^{\circ} \mathrm{C} / \mathrm{xxx}^{\circ} \mathrm{F}$

